Unsupervised Template Mining for Semantic Category Understanding

Lei Shi1,2, Shuming Shi3, Chin-Yew Lin3, Yi-Dong Shen1, Yong Rui3

1Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences
3Microsoft Research

EMNLP 2014, Doha, Qatar
Semantic category names*

• A plain string which can describe a set of items sharing common semantic properties
 – \{Carnival, Christmas,...\} → national holiday of Brazil
 – \{Nocturia, weight loss,...\} → symptom of insulin deficiency

• Manually edited
 – Existing knowledge bases, like Wikipedia

• Automatic extraction
 – Hypernymy (is-A) relation extraction techniques

*The term Category name and category used interchangeably in this slide.
Understand category names

• Category names are in plain text
• Internal structures of category names
 – A set of category names: {CEO of General Motors, CEO of Yahoo, ...}
 – A template: CEO of [company]
• Potential applications
 – Additional features (web search and question answering)
 – Cleaning of noisy category names collection (*promising results in our experiments!*)
 – Possible (for a computer program) to infer the semantic meaning

Symptom of insulin deficiency
Symptom of [medical condition]
Symptom of [hormone] deficiency
How to get these templates automatically from a large collection of category names?
Outline

• The problem
• Approach
• Experiments
• Related work
• Conclusion
Problem definition

• **Input**: a large collection of category names
 – Perform hyernymy extraction on 3 billion English pages
 – 40 million terms, **74 million hypernyms** and 321 million edges (term→hyernym)
 – All the multi-word hypernyms are used as the category name collection

• **Output**: a list of templates
 – **Template**: Multi-word string with one headword and several arguments
 – A score indicating how likely the template is valid

[Diagram of semantic categories and category templates]
Problem analysis

• A straightforward way to get templates
 – Divide & Replace (we have a term \rightarrow hypernym map)
 • Divide : CEO of Delphinus \rightarrow CEO + of + Delphinus
 • Replace : CEO of [company] (√) CEO of [constellation] (×)

• Main Challenge
 – Ambiguity: many segments have multiple meanings
 – CEO of [constellation] (a wrong template!)
Approach
Intuitive approach

- **Category labeling**
 - Category segmentation
 - Divide each category into multiple segments
 - Each segment is one word or phrase in an entity dictionary
 - e.g. holiday of South Africa (holiday + of + South Africa)
 - Segment to hypernym
 - We use a term→hypernym mapping from a dump of Freebase
 - Hint: no weight in the mapping
 - Candidate Template Tuple (CTT) generation
 - U_1: (holiday of [country], Brazil, w_1)
 - U_2: (holiday of [book], Brazil, w_2)

- **Template scoring**
 - Merge all the CTTs for each template
 - e.g. holiday of [country]
 - U_1: (holiday of [country], South Africa, w_1)
 - U_2: (holiday of [country], Brazil, w_2)
 - U_3: (holiday of [country], Germany, w_3)
 - ...
 - $\bar{U} = \{U_1, U_2, U_3, \ldots\}$
Intuitive approach (cont.)

- Scoring function (a TF-IDF style function)
 \[F(U) = \sum_{i=1}^{n} w_i \cdot IDF(h) \] (linear combination function)

- \(h \): the argument type (like, [country] in holiday of [country])
 \[IDF_1(h) = \log \frac{1+N}{1+DF(h)} \]
 - \(N \) is the total number of terms in term \(\rightarrow \) hypernym mapping
 - \(DF(h) \) is the number of terms belong to hypernym \(h \)
 \[IDF_2(h) = \frac{1}{\sqrt{DF(h)}} \]

- Estimation of tuple score \(w_i \)
 - \(w_i = 1 \)
 - No weight information in the term \(\rightarrow \) hypeynym mapping of Freebase
Intuitive approach (cont.)

Term-hypernym mapping
- Brazil → country
- Brazil → book
- South Africa → country
- South Africa → book

Input: Category names

Phase-1: Category labeling
- holiday of [country], Brazil, w_1
- holiday of [book], Brazil, w_2
- holiday of [country], South Africa, w_3
- holiday of [book], South Africa, w_4

Candidate template tuples (CTTs)

Phase-2: Template scoring
- holiday of [country], S_1
- holiday of [book], S_2

Output: Category templates

Linear combination function
Approach: Enhancing Template Scoring

• Enhancing tuple scoring
 – Leveraging statistical information from large corpus to estimate tuple score w_i

• Enhancing tuple combination function
 – Limitations of linear combination function
 – Nonlinear functions

• Refinement with term similarity and terms clusters
 – Building term clusters
 – Refining template score
Enhancing tuple scoring

• Intuition
 – \(U_1: \) (holiday of [country], South Africa, \(w_1 \))
 – \(U_2: \) (holiday of [book], South Africa, \(w_2 \))
 – ”South Africa” is more likely to be a country than a book, \(w_1 > w_2 \)

• The idea: performing statistics in a large corpus
 – Get the popularity \(F \) of (term, hypernym) by referring to a corpus
 – \(w_i = \log(1 + F(v, h)) \)
 • \(v \) indicates the argument value and \(h \) indicates the argument type
 – \(w_i = \frac{F(v, h)}{\gamma + \sum_{h_j \in H} F(v, h_j)} \)
 • \(v \) indicates the argument value; \(h \) and \(h_j \) indicates the argument type
Enhancing tuple combination function

- Definitions of some events
 - T: Template T is a valid template;
 - \bar{T}: T is an invalid template;
 - E_i: The observation of tuple U_i;

- Posterior odds of event T, Given U_1 and U_2
 - Assume E_1 and E_2 are conditionally independent given T or \bar{T}
 - $\frac{P(T|E_1,E_2)}{P(\bar{T}|E_1,E_2)} = \frac{P(T|E_1) \cdot P(\bar{T})}{P(\bar{T}|E_1) \cdot P(T)} \cdot \frac{P(T_2)}{P(T)}$
 - Define $G(T|E) = \log \frac{P(T|E)}{P(\bar{T}|E)} - \log \frac{P(T)}{P(\bar{T})}$
 - $G(T|E_1,E_2) = G(T|E_1) + G(T|E_2)$
Enhancing tuple combination function (cont.)

• Easy to get

 \[G(T|E_1, \ldots, E_n) = \sum_{i=1}^{n} G(T|E_i) \]

• Connection with \(F(\vec{U}) = \sum_{i=1}^{n} w_i \cdot IDF(h) \)

 – Assume \(G(T|E_i) = w_i \cdot IDF(h) \)

 – These two equations are in the same form!

 – Assumption: tuples are conditional independent (may not hold true in reality)

• Nonlinear functions

 – In the task of hypernymy relation extraction (Zhang et al., 2011)

 – p-Norm

 \[F(\vec{U}) = \sqrt[p]{\sum_{i=1}^{n} w_i^p} \cdot IDF(h) \quad (p > 1) \text{ (empirically setting as 2)} \]
Enhancing tuple combination function (cont.) : an example

• Two Templates
 – City of [country], $|\overrightarrow{U_A}| = 200$, average score for each tuple: 1.0
 – City of [book], $|\overrightarrow{U_B}| = 1000$, average score for each tuple: 0.2

• Linear functions
 – $F(\overrightarrow{U_A}) = 200 \times 1.0 = 200$
 – $F(\overrightarrow{U_B}) = 1000 \times 0.2 = 200$

• Nonlinear functions
 – $F(\overrightarrow{U_A}) = 14.1$
 – $F(\overrightarrow{U_B}) = 6.32$

• The score given by the nonlinear functions is more reasonable!
Refinement with term clusters

• **Intuition**
 - \{“city in Brazil”, “city in South Africa”, “city in China”, “city in Japan”\}
 - \{Brazil, South Africa, China, Japan\} **very similar!**
 - City in [country] is more likely to be a good template

• **Building term clusters**
 - Term peer similarity
 • “dog” and “cat”
 • Kozareva et al., 2008; Shi et al., 2010; Agirre et al., 2009
 - Clustering
 • Choose top-30 neighbors for each term
 • Run hierarchical clustering algorithm
 • Merge highly duplicated clusters
 - Assigning top hypernyms
Refinement with term clusters (cont.)

- Template score refinement
 - Template T with argument type h and supporting tuples $\vec{U} = (U_1, U_2, ..., U_n)$ $V = (V_1, V_2, ..., V_n)$ is the corresponding argument values.
 - Observation
 - Compute the intersection of V and every term cluster
 - Good template: at least one cluster which has hypernym h and contains many elements in V
 - Bad template: only contains a few elements in V
 - Calculating supporting scores
 - $S(C, T) = k(C, V) \cdot w(C, h)$
 - C is a term cluster
 - Calculating the final template score
 - $S(T) = F(\vec{U}) \cdot S(C^*, T)$
 - C^* has the maximum supporting score for T
Experiments
Experimental Setup

• Data source
 – A large corpus containing 3 billion English web pages
 – Extract 74 million category names

• Datasets
 – Subsets
 • Choose 20 diverse headwords from 100 random sampled headwords
 • 20 subsets: each set contains all the categories having the same headword
 • E.g., “symptom of insulin deficiency” and “depression symptom” are in the same set
 – Fullset
 • All the 74 million category names

• Labeling
 – Good (1), fair (0.5) and bad (0)

• Metric
 – precision
Experimental Setup

• Comparing methods
 – Base: the intuitive methods
 – LW and LP: with a reasonable estimation of tuple score
 – NLW and NLP: using the nonlinear functions
 – LW+C, LP+C, NLW+C and NLP+C: refinement with term cluster
 – SC (Cheung and Li, 2012)

\[w_i = \log(1 + F(v, h)) : \text{LW, NLW, LW+C, NLW+C} \]

\[w_i = \frac{F(v, h)}{\gamma + \sum_{h_j \in H} F(v, h_j)} : \text{LP, NLP, LP+C, NLP+C} \]
Template Quality Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>P@10</th>
<th>P@20</th>
<th>P@30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base (baseline-1)</td>
<td>0.359</td>
<td>0.361</td>
<td>0.358</td>
</tr>
<tr>
<td>SC (Cheung and Li, 2012)</td>
<td>0.382</td>
<td>0.366</td>
<td>0.371</td>
</tr>
<tr>
<td>LW (baseline-2)</td>
<td>0.633</td>
<td>0.582</td>
<td>0.559</td>
</tr>
<tr>
<td>NLW</td>
<td>0.711</td>
<td>0.671</td>
<td>0.638</td>
</tr>
<tr>
<td>LW+C</td>
<td>0.813</td>
<td>0.786</td>
<td>0.754</td>
</tr>
<tr>
<td>NLW+C</td>
<td>0.854</td>
<td>0.833</td>
<td>0.808</td>
</tr>
</tbody>
</table>

- Base \rightarrow LW : the edge weight can boost the performance
- LW \rightarrow NLW : the effectiveness of nonlinear functions
- LW\rightarrowLW+C and NLW\rightarrowNLW+C : the effectiveness of term similarity
- The combination of the three techniques lead to the best performance
Template Quality Comparison (cont.)

<table>
<thead>
<tr>
<th>Method</th>
<th>P@10</th>
<th>P@20</th>
<th>P@30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base (baseline-1)</td>
<td>0.359</td>
<td>0.361</td>
<td>0.358</td>
</tr>
<tr>
<td>SC (Cheung and Li, 2012)</td>
<td>0.382</td>
<td>0.366</td>
<td>0.371</td>
</tr>
<tr>
<td>LP (baseline-2)</td>
<td>0.771</td>
<td>0.734</td>
<td>0.707</td>
</tr>
<tr>
<td>NLP</td>
<td>0.818</td>
<td>0.791</td>
<td>0.765</td>
</tr>
<tr>
<td>LP+C</td>
<td>0.818</td>
<td>0.788</td>
<td>0.778</td>
</tr>
<tr>
<td>NLP+C</td>
<td>0.868</td>
<td>0.839</td>
<td>0.788</td>
</tr>
</tbody>
</table>

- Base \rightarrow LP: the edge weight can boost the performance
- LP \rightarrow NLP: the effectiveness of nonlinear functions
- LP \rightarrow LP+C and NLP \rightarrow NLP+C: the effectiveness of term similarity
- The combination of the three techniques lead to the best performance
Experimental results on Full-set

Performance of NLP+C method in the full-set
Cleaning of Noisy Category Name Collection

• Category name collection is noisy
 – Automatically constructed from the web

• Basic idea
 – If a category name can match a template, it is more likely to be correct.
 – \(S_{new}(H) = \log(1 + S(H)) \cdot S(T^*) \)
 • \(S(H) \) is the existing category score
 • \(S(T^*) \) is the score of template \(T^* \), \(T^* \) is the best template for the category
 • Re-ranked the category names list based on the new score
 – The precision increases from 0.81 to 0.89
Related work

• Hypernym relation extraction
 – Category names as plain text
 • Hearst (1992); Pantel and Ravichandran (2004); Van Durme and Pasca (2008); Zhang et al. (2011)

• Query understanding
 – Query tagging
 • Li et al. (2009); Reisinger and Pasca (2011)
 – Query template construction
 • Agarwal et al. (2010); Szpektor et al. (2011); Pandey and Punera (2012); Cheugn and Li (2012)

• Category name exploration
 – Third (2012); Fernandez-Breis et al. (2010); Martinez et al. (2012)
Summary

• Mining templates to understand category names
 – Edge weight (term→hypernym)
 – Nonlinear scoring function
 – Term similarity and term clusters

• Contributions
 – First work of template generation specifically for category names in unsupervised manner
 – Extract semantic knowledge and statistical information from a web corpus for improving template generation
 – Study the characteristics of scoring function and demonstrate the effectiveness of nonlinear functions

• Future work
 – Supporting multi-argument templates
 – Applying our approach to general short text template mining
Thanks for your attention!
Questions?